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a  b  s  t  r  a  c  t

In  this  paper  the  modified  Lindstedt–Poincare  method  is  used  for calculation  of  axial  secular  frequen-
cies  of a  nonlinear  ion  trap  with  hexapole,  octopole  and  decapole  superpositions.  The  motion  of  the ion
in a  rapidly  oscillating  field  is  transformed  to  the  motion  in an  effective  potential.  The equations  of  ion
motion  in  the  effective  potential  are  in  the  form  of  a Duffing-like  equation.  With  only  octopole  superposi-
tion  the  resulted  nonlinear  equations  are  symmetric,  however,  in  the  presence  of  hexapole  and  decapole
superpositions,  they  are  asymmetric.  For  asymmetric  oscillators,  it has  been  pointed  out  that  the  angular
frequency  for positive  amplitudes  is  different  from  the  angular  frequency  for negative  amplitudes.  Con-
sidering this  problem,  the  modified  Lindstedt–Poincare  method  is  used  for  solving  the  resulted  nonlinear
eywords:
odified Lindstedt–Poincare
onlinear ion trap
ecular frequency
ymmetric oscillator
symmetric oscillator

equations.  As  a result,  the  ion  secular  frequencies  as  a function  of  nonlinear  field  parameters  are  obtained.
The calculated  secular  frequencies  are  compared  with  the  results  of  some  other  methods  and  the  exact
results.  There  is  an excellent  agreement  between  the  results  of  this  paper  and  the exact  results.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

In an ideal ion trap the potential is pure quadrupole and the main
roperties of the movement of an ion are obtained by the solution
f Mathieu equation [1]. In a practical ion trap, however, the electric
eld distribution deviates from linearity which is the characteristic
f a pure quadrupolar trap geometry. This deviation is caused by
any different agents such as the truncation of electrodes.
These nonlinear agents superimpose weak multipole fields (e.g.,

exapole, octopole, decapole, and higher order fields) and the
esulting nonlinear field ion traps exhibit some effects which differ
onsiderably from those of the linear field traps.

The equation governing the motion of the ion in the nonlin-
ar ion trap is the nonlinear Mathieu equation which cannot be
olved analytically. The superposition of weak higher multipole

elds changes the motions of ions compared to their motions in

 pure quadrupole ion trap.

∗ Corresponding author. Tel.: +98 2182063351; fax: +98 2188221074.
E-mail addresses: Adoroudi@aeoi.org.ir (A. Doroudi), Aminehrezae@yahoo.com

A.R. Asl).

387-3806/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2011.09.003
Knowing the secular frequencies of an ion motion in a practical
ion trap is crucial for mass spectrometry in connection with, for
example, the resonance ejection of the trapped ions from the trap.
So, the main purpose of the present work is the calculation of the
axial secular frequencies.

Simulation studies [2] have shown that hexapole superposition
decreases the secular frequency, positive octopole superposition
increases the ion secular frequency and the negative octopole
superposition decreases the secular frequency. Experimentally, it
has been shown that [3] the octopole and hexapole superposition
resulted in a decrease in ion secular frequency.

In a series of papers, Sevugarajan and Menon [4–6] have studied
the nonlinear Paul trap. They have applied the Lindstedt–Poincare
technique, the modified Lindstedt–Poincare technique and the
multiple scales perturbation technique for solving the nonlinear
equation of ion motion in nonlinear ion trap. Also, in two previ-
ous studies [7,8] done on nonlinear ion traps by one of the present
authors, the homotopy perturbation method [9–12] was used to
study the secular frequencies in nonlinear ion traps. When the

hexapole superposition is considered, the resulting nonlinear equa-
tion has a quadratic nonlinearity and we  know that the angular
frequency for positive amplitudes is different from the angular
frequency for negative amplitudes in nonlinear oscillator with

dx.doi.org/10.1016/j.ijms.2011.09.003
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:Adoroudi@aeoi.org.ir
mailto:Aminehrezae@yahoo.com
dx.doi.org/10.1016/j.ijms.2011.09.003
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uadratic nonlinearity. In all the above studies [4–8] it has been
ssumed that the angular frequency for positive amplitudes is equal
o the angular frequency for negative amplitudes.

In studying the quadratic nonlinear oscillator and mixed parity
onlinear oscillator by the method of harmonic balance, Hu [13,14]
as used the sign function for incorporating the inequality of angu-

ar frequency for negative amplitudes and positive amplitudes. In
his paper, we use this technique for studying the asymmetric non-
inear oscillators.

The exact solution for nonlinear equation of an anharmonic
scillator with quadratic nonlinearity and the exact expression for
ts period have been studied by some authors [15,16].  They have
ound the exact expression for the period of nonlinear oscillator
n terms of complete elliptic integrals. We  have used the results
f these papers and have calculated the exact frequencies of an
nharmonic oscillator with quadratic nonlinearity. The version 7
f mathematica software has been used for calculation of elliptic
ntegrals.

In this paper we use the parameter expanding or modified
indstedt–Poincare method proposed by He [17–19].  In this tech-
ique, a constant, rather than the nonlinear frequency, is expanded

n powers of the expanding parameter to avoid the occurrence of
ecular terms in the perturbation series solution. We  consider the
rst four multipoles of potential distribution inside the ion trap,

.e. quadrapole, hexapole, octopole and decapole terms. The result-
ng nonlinear equation has quadratic and cubic as well as quartic
onlinearity. Due to the inequality of angular frequency for nega-
ive amplitudes and positive amplitudes, we use the sign function
or constructing the two auxiliary nonlinear equations. Then, the

odified Lindstedt–Poincare method is used for solving the two
uxiliary nonlinear differential equations and the ion secular fre-
uencies are calculated. We  compare the results of this paper with
hose obtained by using homotopy perturbation method [7,8] and
ith the exact results.

The outline of the paper is as follows: In Section 2 the axial equa-
ion of ion motion in a nonlinear ion trap is derived. In Section 3 the

odified Lindstedt–Poincare method is applied to solve the equa-
ion of ion motion in nonlinear ion trap and the results are also
iven in this section. Finally, the concluding remarks are given in
ection 4.

. The axial equation of ion motion in a nonlinear ion trap

The axial equation of ion motion in the presence of hexapole and
ctopole superposition has been derived [7,8] before. However, we
ant to include the decapole superposition here, so we  derive once

gain the equation of ion motion.
A solution of Laplace’s equation in spherical polar coordinates

�, ϑ, ϕ) for a system with axial symmetry can be written in the
ollowing general form [20]:

(�, ϑ, ϕ) = �0

∞∑
n=0

An
�n

rn
0

Pn(cosϑ) (1)

here �0 = U + V cos˝t  is the potential applied to the trap (U is
 direct current voltage and V is the zero to peak amplitude
f the sinusoidal RF voltage), An ‘s are arbitrary dimensionless
oefficients, Pn(cosϑ) denotes a Legendre polynomial of order n,
nd r0 is a scaling factor (i.e., the internal radius of the ring
lectrode).

When �nPn(cosϑ) is expressed in cylindrical polar coordi-

ates (r, z) and the three higher order multipoles, i.e. hexapole,
ctopole and decapole corresponding to n = 3, 4 and 5 along with
he quadrupole component corresponding to n = 2 are taken into
ccount, the time dependent potential distribution inside the trap
ass Spectrometry 309 (2012) 104– 108 105

takes the form:

�(r, z, t) = A2

r2
0

V cos˝t

[
2z2 − r2

2
+ f1

r0

(
2z3 − 3r2z

2

)

+ f2
r2
0

(
8z4 − 24z2r2 + 3r4

8

)
+ f3

r3
0

(
8z5 − 40z3r2 + 15zr4

8

)]
(2)

where f1 = A3/A2, f2 = A4/A2 and f3 = A5/A2. Here we  have assumed
the operation of the trap along the au = 0 axis in the Mathieu stability
plot, that is, the DC component of �0 is equal to zero. The coefficients
A2, A3, A4 and A5 refer to the weight of the quadrupole, hexapole,
octopole and decapole superpositions, respectively.

According to classical mechanics [21], the motion of an ion in
a rapidly oscillating field such as �(r, z, t) (due to the largeness of
˝)  can be averaged and transformed to the motion in an effec-
tive potential, Ueff(r, z), related to �(r, z, t) through the following
relation:

Ueff (r, z) = e

2m

〈∣∣∣∣
∫

−→∇ �(r, z, t)dt

∣∣∣∣
2
〉

(3)

Insertion of Eq. (2) for �(r, z, t) in Eq. (3) and averaging with
respect to time gives the following relation for Ueff(r, z),

Ueff (r, z) = 1
�

ω2
0u

(
m

e

)[
r2 + 4z2 + f 2

1

r2
0

(
9z4 + 9

4
r4
)

+ 12f1
r0

z3

+ f2
r2
0

(16z4 − 3r4 − 12r2z2) + f3
r3
0

(
20z5 − 40r2z3 − 15

2
r4z
)]

(4)

where � = 2 for u = r (radial direction) and � = 8 for u = z (axial direc-
tion).

By ignoring the term proportional to f 2
1 compared with the term

proportional to f1 (because f1 = A3/A2 is small in comparison to 1),
the final form of Ueff(r, z) reduces to the following form,

Ueff (r, z) = 1
�

ω2
0u

(
m

e

)  [
r2 + 4z2 + 12f1

r0
z3

+ f2
r2
0

(16z4 − 3r4 − 12r2z2) + f3
r3
0

(
20z5 − 40r2z3 − 15

2
r4z
)]

(5)

The classical equation of ion motion in the effective potential
Ueff(r, z), and with no excitation potential applied to the endcap
electrodes is given by:

d2−→r
dt2

+ e

m
−→∇ Ueff (r, z) = 0 (6)

where −→r is the position vector of the ion. Combining equations (5)
and (6), we get the equation of motion in the axial (z) direction as:

d2z

dt2
+ ω2

0zz + ˛′
2z2 + ˛′

3z3 + ˛′
4z4 + ˛′

5r2z + ˛′
6r2z2 + ˛′

7r4 = 0 (7)

This is the equation in z direction which is coupled to equation
in r direction. Since we are interested in axial secular frequencies,
we  put r = 0 in Eq. (7) and get an equation in axial direction which
depends only on z variable:

d2z

dt2
+ ω2

0zz + ˛′
2z2 + ˛′

3z3 + ˛′
4z4 = 0 (8)

where

qz˝

ω0z =

2
√

2
(9)

qz = 4eV

mr2
0 ˝2

(10)
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′
2 = 9f1ω2

0z

2r0
(11)

′
3 = 8f2ω2

0z

r2
0

(12)

′
4 = 25f3ω2

0z

2r3
0

(13)

In Eq. (8),  by introducing the dimensionless variable x through
he relation x = z/r0, and omission of index z from ω0z (for simplicity)
e get the equation,

¨  + ω2
0x + ˛2x2 + ˛3x3 + ˛4x4 = 0, x(0) = A, ẋ(0) = 0 (14)

here ˛2 = (9/2)f1ω2
0, ˛3 = 8f2ω2

0 and ˛4 = (25/2)f3ω2
0.

There are several methods [22–25] that can be used for solu-
ion of the nonlinear Eq. (14). In the next section of this article we
ave used the modified Lindstedt–Poincare method for solving this
quation.

. Application of modified Lindstedt–Poincare method for
olution of the axial equation of motion and the results

The nonlinear differential equation ẍ + ω2
0x + ˛2x2 + ˛3x3 +

4x4 = 0 is the equation of a mixed parity nonlinear oscillator and
he amplitudes of oscillations for this oscillator are not the same
hen x ≥ 0 and x ≤ 0. We  assume that the positive amplitude is A

nd the negative amplitude is –B (B is positive). Now we construct
he two auxiliary equations by using sign function.

¨ + ω2
0x + ˛2x2sgn(x) + ˛3x3 + ˛4x4sgn(x) = 0,

x ≥ 0, x(0) = A, ẋ(0) = 0 (15)

¨ + ω2
0x − ˛2x2sgn(x) + ˛3x3 − ˛4x4sgn(x) = 0,

x ≤ 0, x(0) = B ẋ(0) = 0 (16)

The sign function is defined as:

gn(x) =

⎧⎪⎨
⎪⎩

1, x > 0

0, x = 0

−1, x < 0

(17)

First, we consider the Eq. (15). It is convenient to introduce
 small, dimensionless parameter ε which is the order of the
mplitude of the motion and can be used as a crutch, or a book
eeping device, in obtaining the approximate solution. In modified
indstedt–Poincare method the solution x and the constant ω2

0 are
xpanded in powers of the parameter ε (which is set equal to 1 at
ast step) as:

 = x0 + εx1 + ε2x2 + · · ··  · · (18)

2
0 = ω2

A + εωA1 + ε2ωA2 + · · ··  · · (19)

Substitution of these equations into Eq. (15), and collecting
erms of the same power of ε, gives the following set of equations:

¨0 + ω2
Ax0 = 0, x0(0) = A, ẋ0(0) = 0 (20)

¨1 + ω2
Ax1 + ωA1x0 + ˛2x2

0sgn(x0) + ˛3x3
0 + ˛4x4

0sgn(x0) = 0,

1(0) = 0, ẋ1(0) = 0 (21)
¨2 + ω2
Ax2 + ωA2x0 + ωA1x1 + 2˛2x0x1sgn(x0) + 3˛3x2

0x1

 4˛4x3
0x1sgn(x0) = 0, x2(0) = 0, ẋ2(0) = 0 (22)
ass Spectrometry 309 (2012) 104– 108

In Eqs. (20)–(22) we have taken into account the following
expression [26,27],

f (x) = f (x0 + εx1 + ε2x2 + · · ·)  = f (x0) + εx1f ′(x0)

+ ε2
[

x2f ′(x0) + 1
2

x2
1f ′′(x0)

]
+ O(ε3)

where f′(x) = df(x)/dx and dsgn(x)/dx = d2sgn(x)/dx2 = · · · = 0 for
x /= 0and sgn(x0 + εx1 + ε2x2 + · · ·)  = sgn(x0)

The first equation of this set can be solved easily, giving the solu-
tion x0(t) = A cosωAt. We  substitute x0(t) into Eq. (21) and expand
the terms x2

0sgn(x0) and x4
0sgn(x0) in Fourier series and keep only

the first four terms of the expansion of sgn(x0). Having no secular
term in solution x1(t), implies:

ωA1 = −8A˛2

3	
− 3A2˛3

4
− 32A3˛4

15	
(23)

Insertion of ωA1 in Eq. (19), neglecting the terms proportional to
ε2 and highers, and combining with ε = 1 at last step, the approxi-
mate amplitude dependent frequency, ω(1)

A , in first order is obtained
as:

ωA = ω(1)
A =

√
ω2

0 + 8A˛2

3	
+ 3A2˛3

4
+ 32A3˛4

15	
(24)

Finally, insertion of ˛2 = 9/2f1ω2
0, ˛3 = 8f2ω2

0 and ˛4 =
25/2f3ω2

0 in this equation gives the result,

ωA

ω0
= ω(1)

A

ω0
=
√

1 + 12f1A

	
+ 6f2A2 + 80f3A3

3	
(25)

In a similar way, for oscillation of ion in negative direction, from
Eq. (16) we get the following result for ωB,

ωB

ω0
= ω(1)

B

ω0
=
√

1 − 12f1B

	
+ 6f2B2 − 80f3B3

3	
(26)

Now, we  go to second order approximation. ωA1, x0(t) and the
first two  terms of the Fourier expansion of x2

0sgn(x0) and x4
0sgn(x0)

are inserted in Eq. (21) and it is solved for x1(t). The final result for
x1(t) is,

x1(t) = A′ cosωAt + B′ cos3ωAt (27)

with A′ = − A2˛2
15	ω2

A

− A3˛3
32ω2

A

− 4A4˛4
35	ω2

A

and B′ = A2˛2
15	ω2

A

+ A3˛3
32ω2

A

+
4A4˛4
35	ω2

A

Insertion of ωA1 and the solutions for x0(t) and x1(t) in Eq. (22),
and implication for having no secular term in x2(t), gives the value
of ωA2 as:

ωA2 = 8A2˛2
2

75	2ω2
A

+ 3A4˛2
3

128ω2
A

+ 384A6˛2
4

1225	2ω2
A

+ A3˛2˛3

10	ω2
A

+ 64A4˛2˛4

175	2ω2
A

+ 6A5˛3˛4

35	ω2
A

(28)

Insertion of calculated expressions for ωA1 and ωA2 in Eq. (19)
along with ε = 1 and using the values of ˛2 = 9/2f1ω2

0, ˛3 = 8f2ω2
0

and ˛4 = 25/2f3ω2
0 gives the final result for ω(2)

A ,  the second order
approximate frequency and TA2, the second order approximate
period, in positive direction:

ωA = ω(2)
A = 1√

√
LA +

√
SA, TA2 = 2	

(2)
(29)
ω0 ω0 210	 ωA

where

LA = 105	 + 70A(18f1 + A(40Af3 + 9	f2)) (30)
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Table 1
Comparison of the calculated values of ω2/ω0 in this paper for only hexapole super-
position with the values obtained by homotopy method [7,8] and the exact values.

f1 B ω2HPM/ω0 ω2/ω0 ωex/ω0

0.01 0.722439 0.99958 0.999568 0.999569
0.05  0.792221 0.98916 0.987913 0.987926
0.10  0.913755 0.95235 0.939082 0.939193
0.11  0.947125 0.94052 0.921043 0.921214
0.12  0.986189 0.92654 0.897928 0.898204
0.13  1.03385 0.90979 0.867083 0.867561
0.14  1.09633 0.88933 0.822454 0.823418
0.15  1.19283 0.86329 0.742729 0.745686
0.155 1.28435 0.847030 0.644365 0.655595
0.1565 1.3404 0.841545 0.527906 0.582921

Table 2
Comparison of the calculated values of ω2/ω0 in this paper for only octopole super-
position with the values obtained by homotopy method [7,8] and the exact values.

ωex/ω0 ω2/ω0 ω2HPM/ω0 f2

0.01 1.01491 1.01487 1.01487
0.05  1.0727 1.072 1.072
0.10  1.1414 1.1389 1.1389
0.15  1.2065 1.20173 1.2017
0.20  1.2682 1.2612 1.2612
0.25  1.3279 1.31776 1.3177
0.30  1.3849 1.37188 1.372
0.40  1.4923 1.4739 1.4739
0.50  1.5928 1.56905 1.569

−0.01  0.98490 0.984866 0.98487
−0.05  0.92255 0.921355 0.92136
−0.10  0.83983 0.833427 0.83343
−0.15  0.75162 0.730894 0.73099
−0.20  0.65918 0.598426 0.59968

Table 3
Comparison of the calculated values of ω2/ω0 in this paper for hexapole and octopole
superpositions with the values obtained by homotopy method [7,8] and the exact
values.

ωex/ω0 ω2/ω0 ω2HPM/ω0 B f2 f1

0.01 0.01 0.721825 1.0145 1.01478 1.01478
0.05  0.05 0.775049 1.06405 1.07113 1.07113
0.10  0.10 0.829421 1.11117 1.13924 1.13922
0.15  0.15 0.872078 1.1453 1.20693 1.20689
0.20  0.20 0.905442 1.16768 1.27422 1.27412
0.25  0.25 0.931747 1.17753 1.34054 1.3404
0.12  0.30 0.794033 1.36112 1.39889 1.39888
0.05  −0.05 0.824202 0.90861 0.883152 0.883223
0.07  −0.07 0.979204 0.858107 0.697807 0.700873
0.01  −0.10 0.733768 0.839123 0.824691 0.824691

Table 4
Comparison of the calculated values of ω2/ω0 in this paper for hexapole, octopole
and  decapole superpositions with the values obtained by homotopy method [7,8]
and  the exact values.

ωex/ω0 ω2/ω0 ω2HPM/ω0 B f3 f2 f1

0.01 0.01 0.01 0.73513 1.01376 1.01302 1.01302
0.02  0.02 0.02 0.76452 1.02522 1.02192 1.02191
0.10  0.10 0.06 0.966336 1.0887 1.03603 1.03584
0.05  0.05 0.03 0.823497 1.05813 1.04941 1.0494
0.07  0.08 0.05 0.885144 1.08355 1.0603 1.06025
0.15  0.20 0.10 1.07527 1.16533 1.0811 1.08014
0.12  0.15 0.04 0.894785 1.16097 1.178 1.17802
0.14  0.30 0.12 0.949597 1.30046 1.31768 1.31774
0.13  0.40 0.16 0.92592 1.39876 1.43654 1.43667
0.03  −0.05 0.02 0.825353 0.908382 0.869339 0.869302
A. Doroudi, A.R. Asl / International Journ

nd

A = 8A2(186543f 2
1 + 768600A2f1f3 + 710000A4f 2

3 )

+ A(63f1(5 + 27f2A2) + 100A2(7 + 33f2A2)f3)	

+ 11025(1 + 6f2A2(2 + 5f2A2))	2 (31)

In a similar way, for oscillation of ion in negative direction from
q. (22) we get:

ωB

ω0
= ω(2)

B

ω0
= 1√

210	

√
LB +

√
SB, TB2 = 2	

ω(2)
B

(32)

here,

B = 105	 − 70B(18f1 + B(40Bf3 − 9	f2)) (33)

nd

B = 8B2(186543f 2
1 + 768600B2f1f3 + 710000B4f 2

3 )

− 840B(63f1(5 + 27f2B2) + 100B2(7 + 33f2B2)f3)	

+ 11025(1 + 6f2B2(2 + 5f2B2))	2 (34)

In these relations A is the positive amplitude and is equal to
aximum value for x and xmax can be obtained by using the relation

0/r0 = 1/
√

2 for ion trap and inserting z0 for z in equation x = z/r0
ives A = 1/

√
2. As mentioned earlier, the amplitude in negative

irection, B, is different from A and can be calculated in terms of A.
or calculation of B, the both side of Eq. (14) is multiplied by ẋ  and
hen integrated [14], giving the result,

1
2

ẋ2 + 1
2

ω2
0x2 + 1

3
˛2x3 + 1

4
˛3x4 + 1

5
˛4x5 = C (35)

here C is the constant of integration. Insertion of initial conditions
n Eq. (35) gives the result,

1
2

ω2
0A2 + 1

3
˛2A3 + 1

4
˛3A4 + 1

5
˛4A5 = 1

2
ω2

0B2 − 1
3

˛2B3

+ 1
4

˛3B4 − 1
5

˛4B5 (36)

Using version 7 of mathematica software, this equation can be
olved analytically and B is calculated in terms of A.

It is clear that the second order approximate period is:

2 = TA2 + TB2

2
(37)

So, the second order approximate secular frequency is:

ω2

ω0
= 2	

T2
= 2√

210	

⎛
⎝ 1√

LA +
√

SA

+ 1√
LB +

√
SB

⎞
⎠

−1

(38)

The perturbed secular frequencies can be calculated through the
elation (38) as a function of field aberrations (parameters f1, f2 and
3).

The values of ω/ω0 for different values of f1, f2 and f3 are given
n Tables 1–4 and for comparison purposes the values of ω/ω0 in
omotopy perturbation approximation [7,8] are also given in the
ables.

For a nonlinear oscillator with only a quadratic term as a non-
inearity (˛2 /= 0 and ˛3 = ˛4 = 0), the exact values of frequencies
re available in the literature [15,16] and are given in terms of

omplete elliptic integrals (relation No. (46) of Ref. [16]). Mathe-
atica software has been used for calculation of numerical values

f elliptic integrals and finding the roots of cubic polynomial equa-
ions. For a nonlinear oscillator with mixed parity (˛2 /= 0, ˛3 /= 0,

0.05  −0.01 0.04 0.935453 0.959367 0.844862 0.844401
0.01  −0.10 0.01 0.761675 0.837824 0.808704 0.808711
0.02  −0.08 0.03 0.89998 0.860218 0.702734 0.69135
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4 /= 0), the exact values of frequencies can be calculated [28] by
he integral,

ωex

ω0
= 2	

(∫ A

0

2dx√
A2 − x2 + 3f1(A3 − x3) + 4f2(A4 − x4) + 5f3(A5 − x

This integral is evaluated numerically by mathematica for
ex/ω0, the exact values of frequencies.

In Table 1, it has been assumed that only the hexapole superpo-
ition exist and the other multipoles are absent. So, the exact values
f secular frequencies (ωex/ω0) for different values of f1 (f2 = f3 = 0)
re compared with the results of this paper (ω2/ω0) for second order
pproximation and the results of homotopy perturbation approxi-
ation obtained in references [7] and [8].
In Table 2, we have considered only the octopole superposition.

n this table, the exact values of secular frequencies (ωex/ω0) for
ifferent values of f2 (f1 = f3 = 0) are compared with the results of
his paper (ω2/ω0) for second order approximation and the results
f homotopy perturbation approximation obtained in references
7] and [8].

In Table 3, the hexapole and octopole superpositions are con-
idered and the exact values of secular frequencies (ωex/ω0) for
ifferent values of f1 and f2 (f3 = 0) are compared with the results of
his paper (ω2/ω0) for second order approximation and the results
f homotopy perturbation approximation obtained in Refs. [7,8].

Finally, in Table 4, the hexapole, octopole, and decapole super-
ositions are considered and the exact values of secular frequencies
ωex/ω0) for different values of f1, f2 and f3 are compared with the
esults of this paper (ω2/ω0) for second order approximation and
he results of homotopy perturbation approximation obtained in
eferences Refs. [7,8].

As is seen in Tables 1–4,  the results of this paper are in excellent
greement with the exact results.

. Conclusion
In this paper we have derived the equation of ion motion in
xial direction of a nonlinear ion trap. The nonlinear ion trap
s generated by superposition of weak multipole fields on the
ure quadrupole field. Hexapole, octopole, and decapole field

[
[
[

[

ass Spectrometry 309 (2012) 104– 108

∫ B

0

2dx√
B2 − x2 − 3f2(B3 − x3) + 4f2(B4 − x4) − 5f3(B5 − x5)

)−1

(39)

superpositions are considered. The computed axial equation of ion
motion is a nonlinear equation with quadratic, qubic and quartic

nonlinearity. We  have used the modified Lindstedt–Poincare
method for solution of the resulted equation and calculation of the
axial secular frequencies of the ions in the trap. The results of this
paper are compared with the exact results and the results of the
homotopy perturbation method. There is an excellent agreement
between the results of this paper and the exact results.
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